EUniWell 3DEM Workshop Program

27th April, 2023

Individual talks are planned to take 20min + 10min of questions.

10:15h-10:30h (CET)	Opening (Antonio Martinez Sanchez)
	First Session: Challenging problems in Structural and Cell
10:30h-12:00h	Biology
	(chair Yves-Henri Sanejouard)
10:30h-11:00h Yves-Henri Sanejouard (University of Nantes)	On the unknown structures of unknown proteins Thanks to artificial intelligence algorithms like Alphafold we now have accurate 3D models for a wide variety of protein targets. However, there is still a lot of work for structural biologists. Noteworthy, for performing its predictions Alphafold relies on what is currently known at both the sequence and structural levels. I will illustrate this point by showing what Alphafold can tell about unknown proteins, that is, proteins with no known homologue.
	Molecular mechanoreceptors: elastic sensory components of the cell
11:00h-11:30h Olga Mayans (University of Konstanz)	cytoskeleton The cytoskeleton plays a crucial role in the generation and transmission of force in the living cell. Variations in its mechanical load trigger cellular responses that are deterministic of cell fate, such as proliferation, differentiation, apoptosis, resorption, and functional remodelling by hypertrophy or atrophy. Using striated muscle as model system, our laboratory studies the molecular mechanisms mediating the sensing of mechanical forces in the cell and their translation into intracellular signalling events. Our interest is to characterize protein components that mediate the communication of the contractile sarcomere with other cellular organelles in function of mechanical activity. Our ultimate goal is to understand how the dysfunction of this sensory system leads to cardiac and skeletal muscle disease. (Cardio)myopathy is closely linked to human demographics and of major socio-economical significance. In this research, we apply an integrative approach to structural biology that combines biochemical, biophysical, computational and structural methodologies, with emphasis on X-ray crystallography.
	In pursue of the 3D structure determination of the 135 kDa PKC α -Fascin1
11:30h-12:00h María Senena Corbalán García & Jesús Baltanás Copado. (University of Murcia)	complex by means of CryoEM. Cancer is one of the leading causes of death worldwide. PKC is a family of highly homologous serine/threonine kinases involved in diverse cellular functions. Since the 1980s, many studies have shown they are involved in tumorigenesis, converting them into important targets for therapy. So far, this group of enzymes is a high potential target for anti-cancer drugs, but no successful approach is available up to date. The lack of structural 3D information of full-length PKCs is one of the big challenges we still face, and perhaps, one of the reasons why most of the PKC inhibitors entering clinical trials turn out to be ineffective. The aim of this project is to collect 3D structural information of PKC α in a complex with one of its substrates, Fascin1. The development of this challenging project will provide an invaluable tool to design new therapeutic strategies with an important impact on health, solving a very important puzzle in PKC-mediated signal transduction.
12:00h-13:00h	Second Session: Cryo-Electron Microscopy Infrastructures (chair Elmar Bhermann)
12:00h-12:30h Elmar Bhermann	Cryo-EM in Cologne Despite being one of the largest universities in Germany, the University of Cologne did not have access to high-resolution electron microscopy for a long time. In

(University of Cologne)	2017, funding from the DFG made it possible to establish a platform for molecular cryo-EM, which became operational in 2019. Since then, cryo-EM has contributed to both individual and collaborative research efforts, but the microscopes are not yet fully utilized. I will talk about the capabilities of our platform in Cologne, how
	we organize access to the infrastructure, and now it could be used in a larger research consortium
12.306-13.006	Cryo-EM infrastructure in Florence and recent applications in Soft Matter I will present an overview of the instrumental infrastructure of the Florence Center
Marco Laurati	for Electron Nanoscopy, funded in 2020. Beyond setups for Cryo-EM and Cryo-EI, a Ceta-D camera for microcrystal electron diffraction was recently installed on our
(University of	instrument and is available for external users based on a proposal system. While
Florence)	the instrument design is optimized for structural biology studies, I will show results
	of Cryo-EM and Cryo-ET in the field of Soft Condensed Matter, concerning the
12.00h 14.20h	Lunch Prook
15.0011-14.5011	Third Session: Crue Electron Temperanhy
14:30h-16:00h	Inird Session: Cryo-Electron Tomography
	(chair Antonio Martinez-sanchez)
	cryo-electron tomography
	Actin contributes to an exceptionally wide range of cellular processes through the
14:30h-15:00h	assembly and disassembly of highly dynamic and ordered structures. An integrated
Warion Jashin (Holmboltz	view of these different structures is needed to understand how distinct properties
Pioneer	and transmitted from molecules to cells. In recent years, cryo-electron tomography
Campus	(cryo-ET) has become the method of choice for structural analysis of the cell
Munich)	interior at the molecular scale. In this talk, I will introduce the cryo-ET workflow
	and present our work on two actin-based force-producing cellular structures,
	cardiac sarcomeres and macrophage podosomes, and show how cryo-ET has
	Molecular Neurobiology by cryo-FT
	Neurons are highly polarized cells forming an intricate network of dendrites and
	axons. They are shaped by the dynamic reorganization of cytoskeleton
	components and cellular organelles. Axon growth is controlled by the external
15·00h-15·30h	stimuli. Axon branching allows the formation of new paths and increases circuit
Naoko Mizuno	degeneration are critical points for the remodeling of the circuit. However, our
(NIH)	understanding of the neuronal morphogenesis is sparse at a molecular level due to
	the lack of direct in-depth observations. Using in situ cellular cryo-electron
	tomography on primary neurons, we aim to understand the molecular actions of
	the remodeling of organelles and cytoskeleton structures during the critical events
	findings of neuronal regeneration.
	Computer methods for cryo-electron tomography: current
15.20h 16.00h	challenges
15:300-16:000 Antonio	The recent advancements in cryo-electron tomography (cryo-ET) hardware
Martinez-	for data collection have enabled the production of a large number of
Sanchez	tomograms. Consequently, a major bottleneck in cryo-ET is the lack of
(University of	computer methods for productive processing of these massive datasets. In
Murcia)	this presentation, I will make a brief review of the current state-of-the-art
-	of computer methods for quantitative data analysis in cryo-ET, with a focus
	on the main challenges that need to be addressed.
16:00h-17:00h	Kound table